→Definitie: bereik
→Definitie: asymptoot |
→Definitie: bereik |
||
Regel 6:
:<math>f_(x)=\frac {1} {x} = x^{-1}</math>
Deze functie bestaat niet voor <math>x = 0</math>, want delen door nul kan niet. Naarmate <math>x</math> dichter bij nul komt, schiet de waarde van de functie steil omhoog voor <math>x > 0</math> en omlaag voor <math>x < 0</math>. De in de grafiek nooit bereikte grenslijn <math>x = 0</math> wordt een asymptoot genoemd. Ook <math>f = 0</math> is een asymptoot: hoe verder <math>x</math> van 0 weg is, hoe dichter de functiewaarde bij 0 komt, maar de waarde wordt nimmer bereikt. De waarde 0 behoort niet tot het bereik van de functie.
|