Lineaire algebra/Kwadratische vorm: verschil tussen versies

geen bewerkingssamenvatting
Geen bewerkingssamenvatting
Geen bewerkingssamenvatting
</math>
 
Dit komtlijkt natuurlijkveek overeen metop de uitwerking van een kwadraat, en daarom heet ''Q'' heet dan ook een kwadratische vorm.
 
== Definitie 22.1 ==
Zij <math>V</math> een lineaire ruimte over een lichaam <math>K</math>. Een '''kwadratische vorm''' op ''V'' is een afbeelding <math>Q:V\to K</math> van <math>V</math> naar <math>K</math> waarvoor een symmetrische bilineaire vorm <math>B</math> op <math>V</math> bestaat, zodanig dat:
:<math>Q(v)=B(v,v).</math>
 
:<math>Q(v+v')=2B(v,v') + Q(v) + Q(v').</math>
 
Als de [[karakteristiek (wiskunde)|karakteristiek]] van <math>K</math> verschilt van 2 dan is deze bilineaire vorm uniek, en heet deze de met <math>Q</math> ''geassocieerde'' bilineaire vorm. De samenhang tussen beide wordt dan weergegeven door:
 
:<math>B(v,w)=\tfrac 12(Q(v+w)-Q(v)-Q(w)).</math>
== Definitie 22.2 ==
Zij <math>V</math> een lineaire ruimte over een lichaam <math>K</math> waarvan de karakteririek ongelijk is aan 2 en ''Q'' een kwadratische vorm op ''V''. De bilineaire vorm
:<math>B(v,w)=\tfrac 12(Q(v+w)-Q(v)-Q(w)).</math>
 
heet de met ''Q'' '''geassocieerde''' bilineaire vorm.
 
== Stelling 22.1 ==
Zij <math>V</math> een lineaire ruimte over een lichaam <math>K</math> waarvan de karakteririek ongelijk is aan 2 en ''Q'' een kwadratische vorm op ''V''. De met ''Q'' geassocieerde bilineaire vorm ''B'' is eenduidig bepaald.
 
 
 
 
 
<math>Q</math> is een [[Homogeniteit (wiskunde)|homogene afbeelding]] van de tweede graad:
2.408

bewerkingen

Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.