Lineaire algebra/Bilineaire vorm: verschil tussen versies

Verwijderde inhoud Toegevoegde inhoud
Nijdam (overleg | bijdragen)
Nijdam (overleg | bijdragen)
Geen bewerkingssamenvatting
Regel 47:
Zij <math>(b_1,\ldots, b_n)</math> de betrokken basis; dan geldt:
:<math>\beta_{ij}= B(b_i,b_j)= B(b_j,b_i)=\beta_{ji}</math>
 
 
==Diagonaalvorm==
Net zoals we met lineaire afbeeldingen gedaan hebben zouden we graag de matrix van een bilineaire vorm diagonaliseren. Deze keer willen we het niet diagonaliseren via gelijkvormigheid maar wel via congruentie. Zoals je in de volgende stelling ziet: we hebben geluk. Iedere matrix is diagonaliseerbaar.
 
{{Wis stelling| Zij <math>\textstyle F,V,+)</math> een vectorruimte met <math>\textstyle \dim_{\mathbb{R}}V=n</math> met een symmetrische bilineaire vorm <math>\textstyle \langle,\rangle</math> en <math>\textstyle 2\neq0 \in F</math>. Dan bestaat een basis <math>\textstyle \{v_1,\ldots,v_n\}</math> van <math>\textstyle V</math> zodat <math>\textstyle \forall i,j:\langle v_i,v_j\rangle=0</math> als <math>\textstyle i\neq j</math>. Dus m.a.w. dat de matrix diagonaal is. }}
 
{{Wis bewijs| We bewijzen dit door inductie op <math>\textstyle n</math>.
 
'''Initialisatiestap''': controleer voor <math>\textstyle n=1</math>: Elke <math>\textstyle 1\times1</math> matrix is een diagonaal matrix dus klop de stelling zeker.
 
'''Inductiestap''': stel dat de stelling klopt voor alle vectorruimtes t.e.m. dimensie <math>\textstyle n-1</math>. Bewijs de stelling nu voor een vectorruimte van dimensie <math>\textstyle n</math>. Er zijn twee gevallen mogelijk: ofwel geldt <math>\textstyle \forall v,w\in V:\langle v,w\rangle = 0</math>, dan klop de stelling, ofwel bestaan er <math>\textstyle v,w\in V</math> waarvoor <math>\textstyle \langle v,w\rangle \neq0</math>. Uit de polaire formule volgt dan dat <math>\textstyle \exists v_1 \in V:p(v_1)\neq 0\Rightarrow\langle v_1,v_1\rangle\neq0</math>. Construeer nu de verzameling
 
:<math> V_1=\{x\in V|\langle x,v_1\rangle = 0\} </math>
 
We zien dat <math>\textstyle V_1</math> een deelruimte van <math>\textstyle V</math> is, dat <math>\textstyle v_1\notin V_1</math> dus is <math>\textstyle \dim V_1 < \dim V = n</math> en tenslotte zien we ook dat <math>\textstyle \left.\langle , \rangle\right|_{V_1\times V_1}:V_1\times V_1\to F</math> een symmetrische bilineaire vorm is.
 
Door de inductiehypothese bestaat er een basis <math>\textstyle \{v_2,\ldots,v_k\}</math> voor <math>\textstyle V_1</math> met <math>\textstyle \langle v_i,v_j\rangle=0</math> als <math>\textstyle i\neq j</math>. Vorm nu de verzameling <math>\textstyle \{v _1,v_2,\ldots,v_k\}</math>, dan geldt nog steeds dat <math>\textstyle \langle v_i,v_j\rangle = 0</math> als <math>\textstyle i\neq j</math>. Als we nu kunnen bewijzen dat die verzameling een basis is, dan is de stelling volledig bewezen. Het is voldoende om te bewijzen dat die verzameling voortbrengend is omdat we al weten dat <math>\textstyle \#\{v_1,\ldots,v_k\}\leq n</math>.
 
Neem een willekeurige <math>\textstyle x\in V</math>. construeer daar uit <math>\textstyle x_1=x - \frac{\langle x,v_1\rangle}{\langle v_1,v_1\rangle}v_1\in V</math>.
 
:<math>\begin{align} \langle x_1,v_1\rangle &= \left\langle x - \frac{\langle x,v_1\rangle}{\langle v_1,v_1\rangle}v_1,v_1\right\rangle\\
&= \langle x,v_1\rangle -\frac{\langle x,v_1\rangle}{\langle v_1,v_1\rangle}\langle v_1,v_1\rangle\\
&= \langle x,v_1\rangle -\langle x,v_1\rangle\\
&=0 \end{align}</math>
 
Dus is <math>\textstyle x_1\in V_1</math>. Aangezien <math>\textstyle x=x_1+\frac{\langle x,v_1\rangle}{\langle v_1,v_1\rangle}v_1=x_1+kv_1</math> kan <math>\textstyle x</math> geconstrueerd worden uit een lineaire combinatie van de vectoren <math>\textstyle \{v_1,v_2,\ldots,v_k\}</math> en is die verzameling dus voortbrengend. We besluiten dus dat <math>\textstyle k=n</math> en dat <math>\textstyle \{v_1,v_2,\ldots,v_n\}</math> een basis is. }}
 
Dit heeft als gevolg dat we in een veld waar <math>\textstyle 2\neq0</math> elke kwadratische vorm kunnen schrijven als een lineaire combinatie van volkomen kwadraten na het aanpassen van het assenstelsel.
 
===Voorbeeld===
 
Neem het veld <math>\textstyle F=\mathbb{R}</math>. <math>\textstyle q</math> is bepaald door de symmetrische matrix
 
:<math> \begin{pmatrix} 3&-1&2\\
-1&0&1\\
2&1&2 \end{pmatrix} </math>
 
Als we dit in formules zetten krijgen we <math>\textstyle q(x,y,z)=3x^2-2xy+4xz+2yz+2z^2</math>. Volgens bovenstaand resultaat kunnen we dit dus tot een lineaire combinatie van volkomen kwadraten omvormen.
 
:<math>\begin{align} q(x,y,z)&=3x^2-2xy+4xz+2yz+2z^2\\
&=3\left(x-\tfrac{1}{3}y+\tfrac{2}{3}z\right)^2-\tfrac{1}{3}y^2-\tfrac{4}{3}z^2+2yz+2z^2\\
&=3\left(x-\tfrac{1}{3}y+\tfrac{2}{3}z\right)^2-\tfrac{1}{3}(y-3z)^2+3z^2+\tfrac{2}{3}z^2\\
&=3\left(x-\tfrac{1}{3}y+\tfrac{2}{3}z\right)^2-\tfrac{1}{3}(y-3z)^2+\tfrac{11}{3}z^2\\
&=3x'^2-\tfrac{1}{3}y'^2+\tfrac{11}{3}z'^2 \end{align}</math>
 
Dan hebben we als matrix van basis verandering de matrix
 
:<math> \begin{pmatrix} x'\\
y'\\
z' \end{pmatrix}= \begin{pmatrix} 1&-\frac{1}{3}&\frac{2}{3}\\
0&1&-3\\
0&0&1 \end{pmatrix} \begin{pmatrix} x\\
y\\
z \end{pmatrix} </math>
 
Deze matrix is inverteerbaar en dus een matrix van basis verandering.
 
 
{{Sub}}
Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.