Infrastructuurplanning/Coördinatensystemen en kaartprojecties: verschil tussen versies

Verwijderde inhoud Toegevoegde inhoud
KKoolstra (overleg | bijdragen)
Geen bewerkingssamenvatting
Leopard (overleg | bijdragen)
k cosmetisch
Regel 9:
[[Afbeelding:Wereldbol 3D globe.jpg|thumb|right|400px|'''Een globe, oftewel de wereld zoals die in werkelijkheid is: geen plat vlak maar een bol.''' Een kaart of plat scherm is een afgeleide van deze werkelijkheid en brengt daarom per definitie vervormingen met zich mee.]]
 
Locaties van de objecten in geo-informatie worden opgeslagen in coördinaten. Het is echter pas duidelijk waar die objecten zich bevinden, wanneer duidelijk is in welk coördinatenstelsel die coördinaten zijn gedefinieerd. Coördinaten krijgen namelijk pas met het bekend zijn van het coördinatensysteem een betekenis. Pas dan zijn ze correct te combineren met coördinaten uit geo-informatie met andere coördinatensystemen. Daarnaast zijn de locaties op aarde niet op een plat vlak gelegen, maar op een bol. Bij het in kaart brengen van die coördinaten op een plat vlak - want dat is een kaart! - wordt gebruik gemaakt van zogenaamde projecties. Een kaart of plat scherm is een afgeleide van deze werkelijkheid en brengt daarom per definitie vervormingen met zich mee. <ref>Dit hoofdstuk is een bewerking van het hoofdstuk 'Vervolg cartografie' uit het wikiboek '''[[Geo-visualisatie]]''; versie: zie [http://nl.wikibooks.org/w/index.php?title=Geo-visualisatie/Vervolg_Cartografie&oldid=139886]; auteurs: zie [http://nl.wikibooks.org/w/index.php?title=Geo-visualisatie/Vervolg_Cartografie&action=history]</ref>
 
==Coördinatensystemen==
Regel 19:
*geprojecteerd coördinatensysteem
 
Een lokaal coördinatensysteem kan bruikbaar zijn voor een enkele lokatielocatie, maar is niet algemeen toepasbaar. Geografische coördinaten hebben als voordeel dat deze in principe wereldwijd toepasbaar zijn. Voor GIS-toepassingen (en andere vormen van kartering) hebben we echter een geprojecteerd coördinatensysteem nodig. Het in Nederland gangbare (geprojectgeerdegeprojecteerde) coördinatensysteem is RD-NAP.
 
===Lokaal coördinatensysteem===
Regel 27:
===Geografisch coördinatensysteem===
[[Afbeelding:Geografische coördinaten.PNG|thumb|right|400px|Geografische coördinaten; definities van breedte- en lengtegraden. Slechts één kwart van het noordelijke halfrond, oftewel een achtste van de wereldbol is weergegeven.]]
Een geografisch coördinatensysteem gebruikt het driedimensionale oppervlak van de aarde om locaties aan te duiden. Dit zijn coördinaten gedefinieerd in graden, minuten en seconden. In spreektaal 'graden noorderbreedte' en 'graden oosterlengte' (tenminste, ten noorden van de evenaar en ten oosten van nul-meridiaannulmeridiaan). Breedtegraden worden ook wel parallellen genoemd, lengtegraden worden meridianen genoemd (zie ook figuur hiernaast). Greenwich geldt meestal als nul-meridiaannulmeridiaan, maar de Fransen gebruiken daar natuurlijk Parijs voor. Elk geografisch coördinatenstelsel heeft een standaard voor bepaling van de spheroïde. Dat wil zeggen dat elk coördinatenstelsel een eigen manier heeft om de bolling van de aarde te definiëren.
 
Twee voorbeelden van '''geografische coördinaten''':
:(0<sup>o</sup>,0<sup>o</sup>) - spreek uit nul komma nul graden - is het nulpunt; daar waar de evenaar en de Meridiaan van Greenwich elkaar snijden.
:(5<sup>o</sup>OL,52<sup>o</sup>NB) - spreek uit 5 graden oosterlengte en 52 graden noorderbreedte) is een punt in Nederland, nabij Utrecht. Het betekent dat vanuit de (denkbeeldige) Meridiaan van Greenwich, 5 graden naar het oosten wordt gegaan, en 52 graden naar het noorden.
Vanaf de Meridiaan van Greenwich is de oostelijke helft van de aardbol in 180 graden ('oosterlengte') verdeeld. De westelijke helft van de aardbol is ook in 180 graden ('westerlengte') verdeeld. Vanaf de evenaar is de aarde naar zowel de noordpool als de zuidpool in 90 graden verdeeld. Naar het noorden heten die graden noorderbreedtes, naar het zuiden zuiderbreedtes.
 
Regel 47:
Twee voorbeelden:
::*'''1) In Nederland''' is 'het stelsel van de Rijksdriehoeksmeting' dé standaard voor GIS- (en CAD-)data. Coördinaten in dit systeem worden Rijksdriehoekscoördinaten genoemd, maar vaker nog RD-coördinaten. Krijg je geo-informatie met deze coördinaten, dan kan je die vrijwel zonder problemen met en zonder het opgeven van een projectie in beeld brengen.
::*'''2) Mondiaal''' De UTM-projectie (Universal Transverse MeractorMercator) is een mondiaal projectiesysteem. De wereld is daarbij in zones verdeeld. Nederland ten westen van zes graden oosterlengte (de meridiaan van Wolvega en Rheden) valt in zone 31U, het oosten van Nederland in zone 32U. Het geprojecteerde coördinatensysteem dat bijvoorbeeld door Rijkswaterstaat op de Noordzee wordt gebruikt is ED50 (zone 31U), maar er is ook WGS84 (zone 31U) dat daar tientallen meters van verschilt.
 
{|style="border:2px solid #000000;" width=825
|- style="background-color:#FFFFAA;"
|
Sinds de introductie van Google Earth is het bij iedereen ook bekend dat kaarten - zowel 2D als 3D ook op zogenaamde '''globes''' kunnen worden gerepresenteerd. Een globe (of '''virtual globe''') is een bol waarop 2D- en 3D-kaarten - maar ook hemellichamen - kunnen worden geprojecteerd. De globe draaien en het standpunt van de kaartlezer wijzigen (van een recht van boven naar een 'scheervluchtpositie') zijn hierbij nieuwe functionaliteiten, vaak gecombineerd met traploos inzoomen dankzij moderne (AJAX-)technieken. Het aanzetten van verschillende kaartlagen is hierbij niet anders dan gewone (GIS-)viewers. De meerwaarde in deze globes boven traditionele platte kaarten is dat er vrijwel geen verstoring van het aardoppervlak is. Bij platte kaarten is er vaak maar één juiste projectiewijze op één specifiek continent of in één specifiek land, waardoor de combinatie van verschillende gegevens uit verschillende landen lastig wordt. Via een globe kan uit elk gebied alle geo-informatie worden toegevoegd, zonder dat met projecties rekening hoeft te worden gehouden. De globe is daarmee een nieuw 'communicatiemedium' (beter: 'projectievlak') geworden.
|}
 
==Kaartprojecties==
[[Afbeelding:PtolemyWorldMap.jpg|thumb|right|400px|'''De wereld volgens PtolomeusPtolemaeus'''. Circa 150 na Christus, een van de oudst bekende kaarten, de geografische coördinaten lijken met een kegelprojectie op een plat vlak te zijn geprojecteerd.]]
[[Afbeelding:Ei en aarde Bol 001.png|thumb|right|400px|Vergelijk de aarde met een ei; wordt dit ei platgeslagen, dan zullen vervormingen ontstaan (pijlen); deze vervormingen zijn steeds groter naar de rand toe.]]
[[Afbeelding:De geoïde.PNG|thumb|right|400px|Voorstelling van de geoïde ten opzichte van (een doorsnede van) een bolvorm, een ellipsoïde en het werkelijke aardoppervlak met gebergten. De inzet toont een uitvergroting van een deel van de geoïde, maar nu mét de werkelijke aardoppervlakte. De geoïde is dus iets anders dan de aardoppervlakte. Overigens, de verschillen zijn sterk overdreven weergegeven.]]
Regel 71:
Een kaartprojectie is dus een methode om de driedimensionale vorm van het aardoppervlak te converteren naar een tweedimensionale voorstelling.
 
Cartografen zien overigens de aarde niet als een perfecte bolvorm. Ook niet als een ei. Ze zien de aarde als een '''ellipsoïde''' (Engels: spheroïd). Dat is een driedimensionale ellips, ronddraaiend om zijn kortste as. Het middelpunt ligt ergens in de buurt van het middelpunt van de aarde. De aarde is namelijk door de draaiing rondom zijn as en de centrifugale kracht afgeplat aan de polen. De aarde is echter eigenlijk ook weer geen ellipsoïde; kijk je namelijk nóg beter naar het zeewaterniveau - je vergeet daarbij de hobbels van de bergen en de diepzeetroggen - dan blijkt de aarde eerder een aardappel of onregelmatige pinda. Overal zitten verlagingen en verhogingen ten opzichte van de meest ideale ellipsoïde. Cartografen noemen deze specifieke 'aardappel- of pindavorm' daarom de '''geoïde'''. Letterlijk betekent dat de 'vorm van de aarde', dus de aarde met al haar in- en uitstulpingen zoals zij die van nature heeft, zonder dat er wiskundige beperkingen aan zijn opgelegd. Zie het plaatje met de regenboogkleuren.
 
Om de geografische coördinaten van de VS op een plat vlak te kunnen krijgen wil je zo min mogelijk vervorming. De ellipsoïde die daar gekozen wordt zal daar in de VS maximaal de oppervlakte goed beschrijven. Maar die ellipsoïde is door de 'aardappelvorm' van de aarde niet geschikt voor Nederland. Voor elk werelddeel, zelfs elke Amerikaanse staat en elk land gebruiken cartografen daarom steeds weer een andere ellipsoïde die (alleen) op die plek van de geoïde het beste het aardoppervlak beschrijft, met de minste vervormingen. Uitgaande van deze wiskundige ellipsoïde (beschrijving) van het aardoppervlak kan vervolgens aan een projectie op een plat vlak gedacht gaan worden.
Regel 102:
*afstandsgetrouw (gelijke afstanden of 'equidistant')
*richtinggetrouw (of 'azimuthaal', behoudt sommige richtingen)
*behoud van kortste weg (de kortste (rechte) lijn op de kaart is ook de kortste weg over de aard-bolaardbol, bijvoorbeeld een gnomonische projectie)
 
Geen enkele projectie scoort perfect op alle kenmerken. Soms scoort een projectie perfect op één eigenschap. Vormgetrouw is bijvoorbeeld de [[w:Mercatorprojectie.|Mercatorprojectieprojectie van Mercator]] Oppervlaktegetrouw is bijvoorbeeld een [[w:orthografische cilinderprojectie|orthografische cilinderprojectie]]. Er is géén één projectie in alle richtingen vanuit elk punt afstandsgetrouw. Vlakprojecties (azimuthale projecties) geven vanuit één punt de juiste richting. Voor wereldkaarten wordt vaak een projectie gekozen die een compromis vormt tussen oppervlakte en afstandsgetrouw, zoals de [[w:Robinsonprojectie|Robinsonprojectieprojectie van Robinson]].
 
Door de eeuwen heen zijn projectiesoorten gekomen en gegaan. Gelukkig zijn er wat richtlijnen welke projectie(soorten) te gebruiken voor welk doel. In de paragraaf hierna wordt een aantal veel gebruikte projectiesoorten besproken, gesorteerd op gebied waarvoor de projectie bedoeld is.
Regel 130:
| Stereografische projectie
| '''Poolgebied'''
| Is beter dan een Orthografischeorthografische Azumithaleazumithale projectie. Een azumithale projectie toont de aardbol vanaf een oneindig verre plek in de ruimte; die laat één helft van de aarde zien, maar is aan de randen sterk vervormd. Wordt bij de stereografische projectie als centrum niet een poolgebied, maar Nederland getoond, dan kan het beeld vreemd (of verfrissend!) overkomen. Kies zelf het centrum van de projectie. Als breedtegraad kies je voor de noord- respectievelijk zuidpool 90°(NB) of -90°(ZB), voor de lengtegraad is dat voor Europa bij voorkeur de 0-meridiaannulmeridiaan: 0°.
|-
| Equidistante, azimuthale projectie
Regel 138:
| Albers Equal Area kegelprojectie
| '''VS''' thematische kaarten
| Voor kleinere gebieden in de VS (staten) is het bij thematische kaarten gebruikelijk te kiezen voor de Lambert Conforme Kegelprojectie. Overigens, ook de (eveneens vormgetrouwe) Mercatorprojectieprojectie van Mercator wordt voor zowel het weergeven van staten als van de beide continenten in Noord- en Zuid-Amerika veelvuldig gebruikt, zelfs al vervormt deze de hoge breedtegraden (Canada, poolgebied) sterk.
|-
| Projectie van Winkel
Regel 149:
|}
 
De Robinson-projectie van Robinson kan worden opgevat als een compromis tussen een conforme projectie (afbeelding linksonder) en een oppervlaktegetrouwe projectie (afbeelding rechtsonder)
{{Afbeelding vast|afbeelding=Mercator_robinson_sinusoïdaal.PNG|breedte=600px|bijschrift=De Robinson projectie van Robinson als compromis}}
 
Ten slotte is hieronder een schematische weergaven van eigenschappen van kaartprojecties. Links de oorspronkelijke objecten, rechts het geprojecteerde resultaat. Merk op dat bij de ene projectie de eigenschappen van een andere projectie ''niet'' waar worden gemaakt! Zo staan in de vormgetrouwe projectie de groottes van verschillende objecten niet in verhouding tot elkaar. En andersom, in de oppervlaktegetrouwe projectie zijn juist de objecten vervormd. Overigens, de linker kolom zou strikt genomen niet op dit platte scherm getoond kunnen worden, omdat hier '3D'-vormen (vormen op de globe) mee bedoeld worden.
Regel 160:
Een '''kaartprojectie''', zo zagen we in het hoofdstuk hiervoor, is dus een manier om het gebogen oppervlak van de aarde over te brengen op een plat vlak; de kaart. Het coördinatenstelsel waarmee die platte kaart is vastgelegd, heet een '''geprojecteerd coördinaten stelsel'''.
 
In een geprojecteerd coördinatensysteem zijn de locaties (van objecten) zijn gedefinieerd door x- en y- coördinaten ten opzichte van een nulpunt.
 
In Nederland gebruikt men als geprojecteerd coördinatensysteem vrijwel zonder uitzondering '''het RD-stelsel'''.
 
:*Voluit staat dit voor het Stelsel van de Rijksdriehoeksmeting. De coördinaten worden in meters vastgelegd. Hoe het RD-stelsel is gedefinieerd is in de figuur goed te zien. Er wordt gebruik gemaakt van een zogenaamde dubbele stereografische projectie (projectie van Schreiber). Het projectievlak is een vierkant. Het middelpunt ervan - liever gezegd, het zwaartepunt - is de Onze Lieve Vrouwetoren in Amersfoort. Destijds was die toren van veraf goed te zien en dit was ongeveer het midden van Nederland. Het projectievlak raakt het aardoppervlak echter niet in Amersfoort; het vlak snijdt de geoïde (voorgesteld door ellipsoïde van Bessel, ook wel 'Bessel 1841' genoemd) met een cirkel op een afstand van 122 kilometer rondom Amersfoort. Hier is voor gekozen om de afwijkingen in heel Nederland te minimaliseren. Zou het projectievlak in Amersfoort de geoïde snijden, dan zouden de afwijkingen verder van Amersfoort af steeds erger worden. Nu worden deze afwijkingen eerlijker uitgesmeerd over Nederland; niet Amersfoort, maar alle plekken in die cirkel rondom Amersfoort hebben een minimale afwijking. De afwijking nog verder naar buiten toe is op deze wijze ook minder dan wanneer gekozen zou zijn voor het snijden van dit vlak in Amersfoort.
:*Ook bijzonder is dat het projectiepunt ('de projectielamp') zich niet in het middelpunt van de ellipsoïde bevindt, maar op de ellipsoïde, recht tegenover Amersfoort, dus aan de andere kant van de wereld. Projecties met een dergelijke positie van het projectiepunt worden ook wel stereografische projecties genoemd.
:*Destijds was het middelpunt (Amersfoort) ook het nulpunt (0,0). Sinds de 70-er jaren zeventig van de vorige eeuw is het (kunstmatige) nulpunt gewijzigd, en wel richting het zuidwesten. Toevallig is dat ergens in een bos in de buurt van Parijs. Daarom wordt dit in de volksmond (onterecht) ook wel eens het 'Parijse stelsel' genoemd. De OLV-toren in Amersfoort heeft daardoor nu de coördinaten (155.000,463.000). Hier is voor gekozen om niet (meer) met negatieve coördinaten te hoeven werken, en om het verwisselen van x- en y-coördinaten te voorkomen. X-coördinaten liggen op deze wijze altijd tussen 0 en 300.000 meter, y-coördinaten liggen altijd tussen de 300.000 en 600.000 meter.
:*Het RD-stelsel mag in principe alleen voor Nederland gebruikt worden; voor buiten Nederland zijn de afwijkingen te groot. Zelfs Europa met Nederland als middelpunt mag niet met het RD-stelsel in kaart worden gebracht.
:* Sinds 2004 geldt voor het RD-stelsel aangepaste parameters; het RD-stelsel is toen licht verbeterd. Daardoor is het RD-stelsel (héél) licht verschoven, met enkele centimeters op bepaalde punten in Nederland. Bij het lezen van de literatuur dient hier rekening gehouden te worden.
:*Daarnaast zijn er - ook na 2004 - nog steeds oude RD-conversiebestanden in omloop, en ook zijn er RD-conversiebestanden die bepaalde parameters afronden. Dit kan leiden tot decimeters verschil. Neem dus a) de jongste en b) altijd dezelfde RD-conversiebestanden.
 
{{voetnoten}}
Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.