Discrete Kansrekening/Stochastische variabelen/Kansverdeling
4.2 Kansverdeling
bewerkenIn het algemeen zijn we niet zozeer in de s.v. zelf (dwz. als functie) geïnteresseerd, als wel in de kansen op gebeurtenissen betreffende die s.v. Als X weer de leeftijd van een willekeurige Nederlander voorstelt, zijn we mogelijk geïnteresseerd in de kans dat de gekozen persoon 18 jaar of ouder is, dus in de kans op de gebeurtenis {s|X(s) ≥ 18}. We zullen deze gebeurtenis kort noteren als {X ≥ 18} en de kans erop als P(X ≥ 18). Op soortgelijke wijze voor andere gebeurtenissen: bv. P({s|45 < X(s) < 65}) noteren we kort als P(45 < X < 65).
Definitie 4.2.1
Als X een s.v. is en B een verzameling reële getallen, schrijven we kort {X∈B} voor de gebeurtenis {s|X(s)∈B} en P(X∈B) voor de kans op die gebeurtenis.
Voorbeeld 1 (twee worpen met een dobbelsteen; vervolg)
Zie voorbeeld 1 in de vorige paragraaf. De gebeurtenis "het totale aantal geworpen ogen is 7" schrijven we als {Z=7} en de kans op die gebeurtenis als P(Z=7).
Net zoals we bij de uitkomsten van een experiment niet geïnteresseerd zijn in de specifieke uitkomst bij de uitvoering van het experiment, maar wel in de mogelijke uitkomsten en de kansen erop, zo zijn we, zoals we boven reeds zeiden, ook niet geïnteresseerd in de waarde die een s.v. in een specifiek geval aanneemt, maar wel in de mogelijke waarden en de bijbehorende kansen.
Voorbeeld 2.
X stelt weer de leeftijd van een willekeurig gekozen Nederlander voor. Het interesseert ons niet dat we bij uitvoering van het experiment meneer Janssen hebben uitgekozen en dat Janssen 53 jaar is. Wij willen weten welke waarden de s.v. X kan aannemen, dus 0 tot en met bv. 140 en wat de kans is dat X zo'n waarde aanneemt, dus hoe groot bv. P(X=53) is. We noemen die waarden met de bijbehorende kansen de (kans)verdeling van de leeftijd X.
Definitie 4.2.2
Onder het waardenbereik SX van een stochastische variabele X verstaan we de verzameling van alle mogelijke waarden die X kan aannemen. Dus SX = {X(s)|s∈S}.
De (kans)verdeling van een s.v. X wordt nu bepaald door de kansen op de verschillende waarden van X, dus door de kansen P(X=x) voor x ∈ SX.
Definitie 4.2.3
Onder de kansfunctie van een stochastische variabele X verstaan we de functie pX: SX → R gedefinieerd door: pX(x) = P(X=x).
De kansfunctie van een s.v. X induceert een kans(maat) PX op het waardenbereik SX van X. Deze kansmaat duiden we aan als (kans)verdeling van X. Waar het echter niet tot verwarring aanleiding geeft, zullen we ook de kansfunctie van X wel met kansverdeling aanduiden.
Definitie 4.2.4
Onder de (kans)verdeling van een stochastische variabele X verstaan we de functie PX gedefinieerd voor B ⊂ SX door:
- .
De kansverdeling PX van een s.v. X is een kans op het waardenbereik SX; dwz. de kansverdeling voldoet aan de axioma's van Kolmogorov. De structuur van een s.v. X met waardenbereik SX, kansverdeling PX en bijbehorende kansfunctie pX, is geheel analoog aan de structuur van een experiment met uitkomstenruimte S, kans P en bijbehorende kansfunctie p. Door de s.v. X wordt de kansstructuur van het experiment overgebracht van de kansruimte (S,P) met daarop de s.v. X naar de kansruimte (SX,PX). Voor zover het X betreft zijn beide beschrijvingen voor het berekenen van kansen gelijkwaardig. We zullen ons daarom voornamelijk bezighouden met s.v.-en en hun kansverdeling, meestal gegeven door de kansfunctie.
Stelling 4.2.1
De kansverdeling PX van een s.v. X is een kans op het waardenbereik SX van X.
Voorbeeld 3 (twee worpen met een dobbelsteen; vervolg)
De kansverdeling van Z wordt gegeven door de kansfunctie pZ. We berekenen eens pZ(3): pZ(3) = P(Z=3) = P({(1,2),(2,1)}) = 2/36.
Op overeenkomstige wijze kunnen we pZ(z) = P(Z=z) voor elke z bepalen; we krijgen dan de volgende tabel:
2 3 4 5 6 7 8 9 10 11 12 totaal 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 36/36
We kunnen pZ ook in formule geven:
- , voor z = 2,3,...,12.
In figuur 4.1 is de verdeling van Z in beeld gebracht.
o o o o o o o o o o o 2 3 4 5 6 7 8 9 10 11 12 Figuur 4.1. De kansverdeling van Z.