Discrete Kansrekening/Verwachtingswaarde/Verwachting van functies van stochastische variabelen

6.3 Verwachting van functies van stochastische variabelenBewerken

Vaak moeten we de verwachting bepalen van een functie van een of meer s.v.-en. We kijken eerst eens naar een voorbeeld.

Voorbeeld 1
We werpen zolang een zuivere munt tot we "munt" gooien. De s.v. N stelt het benodigde aantal worpen voor. N is geometrisch verdeeld met parameter 1/2. Als we n worpen nodig hadden, krijgen we een bedrag 2-n uitbetaald. Noem de uitbetaling X; de uitbetaling is een functie van N, nl. X = 2-N. Voor de verwachte uitbetaling vinden we:

 .

Nu is

 ,

dus

 .

We zien dat we op vanzelfsprekende wijze kunnen schrijven:

 ,

waarin EX is uitgedrukt in de verdeling van N. We hoeven dan niet eerst na te gaan wat de verdeling van X is.

Wat we in het voorbeeld hebben gezien, geldt heel algemeen, en wordt verwoord in de volgende stelling.

Stelling 6.3.1
Laat X1,...,Xn s.v.-en zijn en  , dan is

 ,

waarbij dus gesommeerd wordt over alle mogelijke waarden (x1,...,xn) van (X1,...,Xn).

Bewijs: Noem X = (X1,...,Xn) en x = (x1,...,xn). Dan geldt voor de s.v. g(X):

 


We hoeven dus als we de verwachting van een functie Y = g(X) van X willen bepalen, niet eerst de verdeling van Y te berekenen, maar kunnen met bovenstaande stelling Eg(X) direct via de verdeling van X bepalen.

Voorbeeld 2 (twee worpen met een dobbelsteen; vervolg)
We kunnen Z en M opvatten als functies van de ogenaantallen X en Y van resp. de eerste en tweede worp: Z = X + Y en M = \max(X,Y). We berekenen:

 

en

 
 ,

waarbij we bij de laatste sommatie bedenken dat er (2m-1) punten (x,y) zijn waarvoor \max(x,y) = m.

Merk op dat E(X + Y) = EX + EY; in een volgende paragraaf zullen we zien dat deze relatie algemeen geldt.

We vergelijken het resultaat met een berekening van EZ en EM via de verdelingen van Z en M:

 

en

 .

 

Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.