Gebruiker:KKoolstra/Onderzoek/Diagnose
Stelling van Bayes
bewerkenZie w:Stelling van Bayes Zie w:en:Bayes' theorem
Kopie uit w:Stelling van Bayes; 19 februari 2011
Het theorema van Bayes (ook regel van Bayes of stelling van Bayes) is een regel uit de kansrekening die de kans dat een bepaalde mogelijkheid ten grondslag ligt aan een gebeurtenis uitdrukt in de voorwaardelijke kansen op de gebeurtenis bij elk van de mogelijkheden. Het theorema is weliswaar genoemd naar Thomas Bayes, maar vrijwel zeker niet door hem geformuleerd, maar door Pierre-Simon Laplace, die vrij zeker inspiratie opdeed bij een postuum gepubliceerd artikel van Bayes uit 1763. Het theorema komt voor in Laplace's Théorie analytique des probabilités uit 1812. Het theorema wordt ook wel omkeerformule genoemd, omdat het de "omgekeerde" voorwaardelijke kans berekent. In formulevorm ziet het theorema er als volgt uit:
De gebeurtenis B kan plaatsvinden onder de omstandigheid dat A optreedt, maar ook als A niet optreedt. Uitgaande van de voorwaardelijke kansen op B gegeven de mogelijkheden wel A en niet A, wordt de kans bepaald dat, uitgaande van de situatie dat B daadwerkelijk gebeurd is, het de omstandigheid A was waaronder B is opgetreden.
De formule is een directe toepassing van de definitie van voorwaardelijke kans
en de wet van de totale kans die in dit geval luidt:
Bij toepassing van het theorema wordt uitgegaan van reeds bekende kansen, zgn. a priori-kansen, op basis van eerder onderzoek. Bij gebrek daaraan kan hiervoor ook het oordeel van een ervaringsdeskundige worden gevraagd die een bepaalde waarschijnlijkheid toekent aan gebeurtenissen, bijvoorbeeld door te schatten dat een voorval voor 0.7 (70%) plausibel wordt geacht.
De regel van Bayes vindt ook toepassing in kennissystemen.
Voorbeeld
bewerkenIn de bevolking lijdt 1 op de 100 mensen aan reumatoïde artritis. Er bestaat een test, de "reumatest", die bij reumapatiënten meestal positief is en bij niet-reumapatiënten meestal negatief. De test is echter niet 100% waterdicht en heeft een specificiteit (dat wil zeggen de kans op een negatieve test als de ziekte afwezig is) van 0,8 en een sensitiviteit (kans op een positieve test bij aanwezigheid van de ziekte) van 0,7.
Vraag: Is het zinvol om de bevolking met deze test op het voorkomen van reuma te testen?
Daartoe bepalen we wat de kans is op de ziekte als we een willekeurig iemand uit de bevolking testen en de uitslag positief is.
Met Z geven we aan dat de testpersoon aan de ziekte lijdt en met + dat de uitslag van de test positief is. Uit de bovenstaande gegevens volgt:
- P(Z)=0,01 (kans dat iemand de ziekte heeft)
- P(+|Z)= 0,70 (de kans op een positieve uitslag als de ziekte aanwezig is)
- P(-|niet Z)=0,80 (de kans op een negatieve uitslag als de ziekte afwezig is)
Met de regel van Bayes kunnen we nu berekenen:
- .
Dus zelfs bij een positieve uitslag van de test is de kans dat de onderzochte persoon de ziekte heeft maar iets meer dan drie procent. De "reumatest" is in deze situatie nagenoeg onbruikbaar.
De toepassing van dit theorema in de epidemiologie is belangrijk, zie ook prevalentie en incidentie.
Generalisatie
bewerkenOnderscheidt men bij het optreden van de gebeurtenis B niet slechts de mogelijkheden A en niet A, maar een reeks (disjuncte) mogelijkheden , die dus een partitie van de uitkomstenruimte vormen, dan luidt de regel:
- .
Men kan nog algemener een soortgelijke regel formuleren voor kansverdelingen. Voor de simultane continue verdeling van twee stochastische variabelen X en Y luidt deze:
Voetnoten: